Paper 2 Option B

ıest	on Scheme	Marks	AOs
1(a)	$\sec x - \tan x = \frac{1}{\frac{1 - t^2}{1 + t^2}} - \frac{2t}{1 - t^2}$	M1	2.1
	$= \frac{1+t^2}{1-t^2} - \frac{2t}{1-t^2} = \frac{1-2t+t^2}{1-t^2}$	M1	1.1b
	$=\frac{(1-t)^2}{(1-t)(1+t)} = \frac{1-t}{1+t} *$	A1*	2.1
		(3)	
(b)	$\frac{1-\sin x}{1+\sin x} = \frac{1-\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2}}$	M1	1.1a
	$= \frac{1+t^2-2t}{1+t^2+2t}$	M1	1.1b
	$=\frac{(1-t)^2}{(1+t)^2} = \left(\frac{1-t}{1+t}\right)^2 = (\sec x - \tan x)^2 *$	A1*	2.1
		(3)	
		(6 r	narks)
otes			
a) M1:	Uses sec $x = \frac{1}{\cos x}$ and the <i>t</i> -substitutions for both $\cos x$ and $\tan x$ to obtain	an expres	sion
M1: A1*:	in terms of t Sorts out the sec x term, and puts over a common denominator of $1 - t^2$ Factorises both numerator and denominator (must be seen) and cancels the achieve the answer	(1+t) term	n to
(b) M1: M1: A1*:	Uses the <i>t</i> -substitution for sin <i>x</i> in both numerator and denominator Multiples through by $1 + t^2$ in numerator and denominator Factorises both numerator and denominator and makes the connection with achieve the given result	n part (a) to)

	mm	AOs
Question Scheme	Marks	AOs
2 £300 purchased one hour after opening $\Rightarrow V_0 = 3$ and $t_0 = 1$; half an hour after purchase $\Rightarrow t_2 = 1.5$, so step <i>h</i> required is 0.25	B1	3.3
$t_0 = 1, V_0 = 3, \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 \approx \frac{3^2 - 1}{1^2 + 3} = 2$	M1	3.4
$V_1 \approx V_0 + h \left(\frac{dV}{dt}\right)_0 = 3 + 0.25 \times 2 = \dots$	M1	1.1b
= 3.5	A1ft	1.1b
$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_{1} \approx \frac{3.5^{2} - 1.25}{1.25^{2} + 1.25 \times 3.5} \left(=\frac{176}{95}\right)$	M1	1.1b
$V_2 \approx V_1 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_1 = 3.5 + 0.25 \times \frac{176}{95} = 3.963, \text{ so } \pounds 396$	A1	3.2a
(nearest £)	(6)	$\left - \right $
	(6)	narks)
Notes:	(01	uai K5)
31: Identifies the correct initial conditions and requirement for <i>h</i>		
M1: Uses the model to evaluate $\frac{dV}{dt}$ at t_0 , using their t_0 and V_0		
M1: Applies the approximation formula with their valuesA1ft: 3.5 or exact equivalent. Follow through their step value		
M1: Attempt to find $\left(\frac{dV}{dt}\right)_1$ with their 3.5		
-		

		m	u.myn				
Quest	ion Schowe	Marks	AOS				
	ion Scheme	магкз	AUS				
3	$\frac{1}{x} < \frac{x}{x+2}$						
	$\frac{(x+2)-x^2}{x(x+2)} < 0 \text{or} x(x+2)^2 - x^3(x+2) < 0$	M1	2.1				
	$\frac{x^2 - x - 2}{x(x+2)} > 0 \Rightarrow \frac{(x-2)(x+1)}{x(x+2)} > 0 \text{ or } x(x+2)(2-x)(x+1) < 0$	M1	1.1b				
	At least two correct critical values from $-2, -1, 0, 2$	A1	1.1b				
	All four correct critical values $-2, -1, 0, 2$	A1	1.1b				
	$ \{x \in \mathbb{R} : x < -2\} \cup \{x \in \mathbb{R} : -1 < x < 0\} \cup \{x \in \mathbb{R} : x > 2\} $	M1 A1	2.2a 2.5				
		(6)					
	(6 marks)						
otes	:						
11:	Gathers terms on one side and puts over common denominator, or multip	by by $x^2(x+$	$(-2)^2$				
11:	and then gather terms on one side Factorise numerator or find roots of numerator or factorise resulting in ea factors	quation into 4	4				
1:	At least 2 correct critical values found						
1:	Exactly 4 correct critical values						
M1:	Deduces that the 2 "outsides" and the "middle interval" are required. Manumber line or any other means	y be by sketo	ch,				
1.	Exactly 2 correct intervals, accord equivalent set notations, but must be given as a set						

A1: Exactly 3 correct intervals, accept equivalent set notations, but must be given as a set e.g. accept $\mathbb{R} - ([-2, -1] \cup [0, 2])$ or $\{x \in \mathbb{R} : x < -2 \text{ or } -1 < x < 0 \text{ or } x > 2\}$

		mm.	myma
		Marks	4ths
uestion	Scheme	Marks	AOs
4(a)	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2} \mathbf{AB} \times \mathbf{AC} $	M1	3.1a
	$\frac{1}{2} \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{C} = \frac{1}{2} (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 2\mathbf{k}) $	M1	1.1b
	$=\frac{1}{2} 5\mathbf{i}+3\mathbf{j}+\mathbf{k} $	M1	1.1b
	$=\frac{1}{2}\sqrt{35}(\mathrm{m}^2)$	A1	1.1b
		(4)	
	Alternative		1
	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2}\sqrt{ \mathbf{AB} ^2 \mathbf{AC} ^2 - (\mathbf{AB.AC})^2}$	M1	3.1a
	$ \mathbf{AB} ^2 = 4 + 9 + 1 = 14, \mathbf{AC} ^2 = 1 + 1 + 4 = 6$ and $\mathbf{AB.AC} = 2 + 3 + 2 = 7$	M1	1.1b
	So area of glue is $=\frac{1}{2}\sqrt{('14')('6') - ('7')^2}$	M1	1.1b
	$=\frac{1}{2}\sqrt{35} (m^2)$	A1	1.1b
		(4)	
(b)	Volume of parallelepiped taken up by concrete is e.g. $\frac{1}{6}(\mathbf{OC}.(\mathbf{OA} \times \mathbf{OB}))$	M1	3.1a
	$= \frac{1}{6}(\mathbf{i} + \mathbf{j} + 2\mathbf{k}).(2\mathbf{i} \times (3\mathbf{j} + \mathbf{k}))$	M1	1.1b
	$=\frac{10}{6}=\frac{5}{3}$	Al	1.1b
	Volume of parallelepiped is 6 × volume of tetrahedron (= 10), so volume of glass is difference between these, viz. $10 - \frac{5}{3} =$	M1	3.1a
	Volume of glass = $\frac{25}{3}$ (m ³)	A1	1.1b
		(5)	

		4	ww.myma		
Question	Scheme	Marks	A0c		
Question		Marks	AUS		
	4(b) Alternative -j+3k is perpendicular to both OA = 2i and OB = 3j + k	M1	3.1a		
	Area $AOB = \frac{1}{2} \times \mathbf{OA} \times \mathbf{OB} = \frac{1}{2} \times 2 \times \sqrt{10} = \sqrt{10}$				
	$\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k}) \Longrightarrow p = \frac{1}{2}$ and so height of tetrahedron is $h = \frac{1}{2} -\mathbf{j} + 3\mathbf{k} = \frac{1}{2}\sqrt{10}$	M1	3.1a		
	Volume of glass is $V = 5 \times$ Volume of tetrahedron = $5 \times \frac{1}{3} \sqrt{10} \times \frac{1}{2} \sqrt{10}$	M1	1.1b		
	$=\frac{25}{3}\left(\mathrm{m}^{3}\right)$	A1	1.1b		
		(5)			
(c)	The glued surfaces may distort the shapes / reduce the volume of concrete Measurements in m may not be accurate The surface of the concrete tetrahedron may not be smooth Pockets of air may form when the concrete is being poured	B1	3.2b		
		(1)			
		(10	marks)		
a) M1: Show <i>ABC</i> M1: Any	of column vectors throughout ws an understanding of what is required via an attempt at finding the		-		
and	and attempts to use them				
	rect procedure for the vector product with at least 1 correct term $\frac{1}{2}\sqrt{2}$	55 or exac	π		
(a) Alte M1: Find side: M1: May M1: Corr	valent rnative Is two appropriate sides and attempts the scalar product and magnitu s r use different sides to those shown rect full method to find the area of the triangle using their two sides $\overline{35}$ or exact equivalent	des of two	of the		

115

	www.m
	tion 4 notes continued:
Ques	ion 4 notes continued:
(b)	
M1: M1:	Attempts volume of concrete by finding volume of tetrahedron with appropriate method Uses the formula with correct set of vectors substituted (may not be the ones shown) and vector product attempted
A1: M1:	Correct value for the volume of concrete Attempt to find total volume of glass by multiplying their volume of concrete by 6 and subtracting their volume of concrete. May restart to find the volume of parallelepiped 25
A1:	$\frac{25}{3}$ only, ignore reference to units
(b) M1:	Alternative Notes (or works out using scalar products) that $-j+3k$ is a vector perpendicular to both OA = 2i and $OB = 3j+k$
A1:	Finds (using that OA and OB are perpendicular), area of $AOB = \sqrt{10}$
M1:	Solves $\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k})$ to get the height of the tetrahedron $\left[(\mu = \lambda =) \ p = \frac{1}{2}, \text{ so } h = \frac{1}{2} -\mathbf{j} + 3\mathbf{k} = \frac{1}{2}\sqrt{10} \right]$
M1:	Identifies the correct area as 5 times the volume of the tetrahedron (may be done as in main scheme via the difference)
A1:	$\frac{25}{3}$ only, ignore reference to units
(c) B1:	Any acceptable reason in context

		hu	AOs
Question	Scheme	Marks	AOs
5(a)	$y^2 = (8p)^2 = 64p^2$ and $16x = 16(4p^2) = 64p^2$ $\implies P(4p^2, 8p)$ is a general point on C	B1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y\frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right)\left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and <i>l</i> cuts <i>x</i> -axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
	<i>x</i> = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \frac{1}{2}(99)(12) - \int_0^9 4x^{\frac{1}{2}} dx$	M1	2.1
	$f = \frac{1}{4r^2}$ 8 $\frac{3}{2}$	M1	1.1b
	$\int 4x^{\frac{1}{2}} dx = \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
	Area(R) = $\frac{1}{2}(18)(12) - \frac{8}{3}\left(9^{\frac{3}{2}} - 0\right) = 108 - 72 = 36 *$	A1*	1.1b
		(8)	

	www.mym
Question Scheme	Marks AOs
5(c) Alternative 1	
$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1 3.1a
$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1 1.1b
$p = \frac{3}{2} \text{ into } l \text{ gives } \frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \implies x = \dots$	M1 2.1
$x = \frac{3}{2}y - 9$	A1 1.1b
$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_{0}^{12} \left(\frac{1}{16}y^{2} - \left(\frac{3}{2}y^{2}\right)\right)$	(y-9)dy M1 2.1
$\int \left(\frac{1}{16}y^2 - \frac{3}{2}y + 9\right) dy = \frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$	(+ <i>c</i>) M1 1.1b
	A1 1.10
Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$ = 36 - 108 + 108 = 36 *	0) A1* 1.1b
- 50 100 100 50	(8)
5(c) Alternative 2	
$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1 3.1a
$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1 1.1b
$p = \frac{3}{2}$ and <i>l</i> cuts px-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow$	x = M1 2.1
x = -9	A1 1.1b
$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l : y = \frac{2}{3}x + 6 \text{ giv}$ $\Rightarrow \text{Area}(R) = \frac{1}{2}(9)(6) + \int_{0}^{9} \left(\left(\frac{2}{3}x + 6\right) - \left(4x^{\frac{1}{2}}\right)^{\frac{1}{2}} \right) dx$	M1 21
$\int \left(\frac{2}{3}x + 6 - 4x^{\frac{1}{2}}\right) dx = \frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}} (-1)$	+c) A1 1.1b
Area(R) = 27 + $\left(\left(\frac{1}{3}(9)^2 + 6(9) - \frac{8}{3}(9^{\frac{3}{2}})\right) - (0)\right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1* 1.1b
	(8)

www.mymathscloud.com **Question 5 notes: (a)** Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into 16x to **B1**: obtain $64 p^2$ and concludes that P lies on C **(b) M1**: Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient m, which is in terms of p. M1: Accept use of $8p = m(4p^2) + c$ with a clear attempt to find c Obtains $py = x + 4p^2$ by cso A1*: (c) Substitutes their x = "-a" and $y = \frac{10}{3}$ into l M1: M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) and y = 0 into l and solves to give M1: *x* = A1: Finds that *l* cuts the *x*-axis at x = -9**M1**: Fully correct method for finding the area of Ri.e. $\frac{1}{2}$ (their $x_p - "-9"$)(their y_p) $- \int_{a}^{\text{their } x_p} 4x^{\frac{1}{2}} dx$ Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$ M1: Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified A1: Fully correct proof leading to a correct answer of 36 A1*: Alternative 1 (c) **M1:** Substitutes their x = "-a" and $y = \frac{10}{2}$ into *l* M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) into l and rearranges to give $x = \dots$ **M1:** Finds *l* as $x = \frac{3}{2}y - 9$ A1: Fully correct method for finding the area of R **M1:** i.e. $\int_{-\infty}^{1} \frac{1}{16} y^2 - \text{their}\left(\frac{3}{2}y - 9\right) dy$ **M1:** Integrates $\pm \lambda y^2 \pm \mu y \pm v$ to give $\pm \alpha y^3 \pm \beta y^2 \pm v y$, where $\lambda, \mu, v, \alpha, \beta \neq 0$ A1: Integrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified A1*: Fully correct proof leading to a correct answer of 36

www.mymathscloud.com **Question 5 notes continued:** Alternative 2 (c) Substitutes their x = "-a" and $y = \frac{10}{3}$ into l M1: M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) and y = 0 into l and solves to give $x = \dots$ M1: A1: Finds that *l* cuts the *x*-axis at x = -9M1: Fully correct method for finding the area of Ri.e. $\frac{1}{2}$ (their 9)(their 6) + $\int_{0}^{\text{their } x_{p}} \left(\text{their } \left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dy$ Integrates $\pm \lambda x \pm \mu \pm v x^{\frac{1}{2}}$ to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, v, \alpha, \beta \neq 0$ M1: Integrates $\left(\frac{2}{3}x+6\right) - \left(4x^{\frac{1}{2}}\right)$ to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified A1: A1*: Fully correct proof leading to a correct answer of 36

120

Questior	1		Scheme				Marks	AOs
6(a)	H ₀ : There i	s no associ	ation betwe	en languag	ge and gende	r	B1	1.2
							(1)	
(b)		54	$\frac{4 \times 85}{150} = 30.6$	5 *			B1*cso	1.1b
							(1)	
(c)	Error	acted		Language	:			
		ected encies	French	Spanish	Mandarin			
	Gender	Male	26.43	23.4	15.16		M1	2.1
		Female	34.56	[30.6]	19.83			
	$\gamma^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$	$\frac{(O-E)^2}{2} = \frac{1}{2}$	(23-26.43	$\frac{)^2}{1} + \frac{(11)^2}{10}$	$(5-19.83)^2$		M1	1.1b
		$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(23-26.43)^{2}}{26.43} + \dots + \frac{(15-19.83)^{2}}{19.83}$ Awrt <u>3.6/3.7</u>						
			Awn <u>3.0/3</u>	<u>./</u>			A1 (3)	1.1b
(d)	Degrees of free	dom (3 – 1	$(2-1) \rightarrow 0$	Critical val	lue $\chi^2_{2,0.01} = 9$.210	M1	3.1b
	As $\sum \frac{(O-E)^2}{E} < 9.210$, the null hypothesis is not rejected					A1	2.2b	
							(2)	
(e)	Still not	rejected s	ince $\sum \frac{(O-1)}{2}$	$\frac{(-E)^2}{E} < \chi^2_{2,0}$	$_{0.1} = 4.605$		B1	2.4
							(1)	
							(8 n	narks)
Notes: (a)								
B1: Fo	r correct hypothesis	in context						
(b) <u>B1*: Fo</u> (c)	r a correct calculation	on leading	to the given	answer an	d no errors s	een		
	r attempt at $\frac{(\text{Row T})}{(1-1)}$	otal)(Colun Grand Tota	nn Total) l) to	find expec	ted frequenc	ies		
M1: Fo	r applying $\sum \frac{(O-I)}{F}$	$(E)^2$						
	awrt 3.6 or 3.7							
(d)								
	r using degrees of fr		-	model crit	ical value			
	r correct comparisor	n and concl	lusion					
A1: Fo (e)								

Further Statistics 1 Mark Scheme (Section B)

ion Scheme	Marks	AOs
-4 = 2 - 5E(X)	M1	3.1a
E(X) = 1.2		
$-1 \times c + 0 \times a + 1 \times a + 2 \times b + 3 \times c = 1.2$	M1	1.1b
a + 2b + 2c = 1.2 1		
$P(Y \ge -3) = 0.45$ gives $P(2-5X \ge -3) = 0.45$		1
i.e. $P(X \le 1) = 0.45$	M1	2.1
2a + c = 0.45 2		
$2a + b + 2c = 1 \qquad \qquad \boxed{3}$	M1	1.1b
$ \begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} e^{-2ab} e^{-2a} e^{-2ab} e^{-2a} e^{-2ab} e^{-2a} e^{$	Dr M1	1.1b
e.g. $\boxed{3} - \boxed{2} \Rightarrow b + c = 0.55$ sub. $2(b+c)$ into $\boxed{1} \Rightarrow a = 0.1$ et	c	
a = 0.1 $b = 0.3$ $c = 0.25$	A1	1.1b
	A1	1.1b
	(7)	1.1.
$Var(Y) = 75 - (-4)^2 \text{ or } 59$	M1	1.1a
$[Var(Y) = 5^{2}Var(X) \text{ implies}] Var(X) = 2.36$	A1	1.2
	(2)	
$P(Y > X) = P(2 - 5X > X) \rightarrow P(X < \frac{1}{3})$	M1	3.1a
$P(X < \frac{1}{3}) = a + c = 0.35$	Alft	1.1b
	(2)	1

(a)

M1: For using given information to find an expression for E(X) i.e. use of E(Y) = 2 - 5E(X)

M1: For use of $\sum x P(X = x) = `1.2'$

M1: For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation in *a* and *c*

M1: For use of $\sum P(X = x) = 1$

M1: For solving their 3 linear equations (matrix or elimination)

- A1: For any 2 of a, b or c correct
- A1: For all 3 correct values

Question 7 notes continued:

Another method for part (a) is:

- www.mymathscloud.com M1: For using given information to find the probability distribution for Y leading to an expression for E(Y)
- M1: For use of $\sum y P(Y = y) = -4$
- M1: For use of P($Y \ge -3$) = 0.45 to set up the argument for solving by forming an equation in *a* and *c*
- For use of $\sum P(Y = y) = 1$ M1:
- M1: For solving their 3 linear equations (matrix or elimination)
- A1: For any 2 of a, b or c correct
- For all 3 correct values A1:

(b)

- For use of $Var(Y) = E(Y^2) [E(Y)]^2$ (may be implied by a correct answer) M1:
- For use of $Var(aX) = a^2 Var(X)$ to reach 2.36 or exact equivalent A1:

(c)

M1: For rearranging to the form $P(X \le k)$

A1ft: 0.1' + 0.025' (provided their *a* and *c* and their *a* + *c* are all probabilities)

Another method for part (c) is:

For comparing distribution of X with distribution of Y to identify X = -1 and X = 0M1:

A1ft: '0.1' + '025' (provided their a and c and their a + c are all probabilities)

		mm	AOS
Questior	Scheme	Marks	AOs
8(a)	$X \sim Po(2.6)$ $Y \sim Po(1.2)$		
	P(each hire 2 in 1 hour) = $P(X=2) \times P(Y=2) = 0.25104 \times 0.21685$	M1	3.3
	= 0.05444 awrt <u>0.0544</u>	Al	1.1b
		(2)	
(b)	$W = X + Y \rightarrow W \sim \text{Po}(3.8)$	M1	3.4
	P(W=3) = 0.20458 awrt <u>0.205</u>	A1	1.1b
		(2)	
(c)	$T \sim \text{Po}((2.6+1.2) \times 2)$	M1	3.3
	P(T < 9) = 0.64819 awrt <u>0.648</u>	A1	1.1b
		(2)	
(d)	(i) Mean = $np = 2.4$	B1	1.1b
	(ii) Variance = $np(1-p) = 2.3904$ awrt <u>2.39</u>	B1	1.1b
		(2)	
(e)	(i) $[D \sim Po(2.4) P(D \leq 4)]$ = 0.9041 awrt 0.904	B1	1.1b
	= 0.9041 awrt <u>0.904</u> (ii) Since <i>n</i> is large and <i>p</i> is small/mean is approximately equal to variance	B1	2.4
		(2)	
			narks)
otes:			
im <u>A1: aw</u> b) A1: Fo ans	r $P(X=2) \times P(Y=2)$ from $X \sim Po(2.6)$ and $Y \sim Po(1.2)$ i.e. correct module by correct answer) rt 0.0544 r combining Poisson distributions and use of Po('3.8') (may be implied swer)		e
(c) M1: Fo by	rt 0.205 r setting up a new model and attempting mean of Poisson distribution (r correct answer) rt 0.648	nay be imp	lied
(d)(i) B1: Fo	r 2.4		
(d)(ii) B1: Fo	r awrt 2.39		
(e)(i)	- armt 0 004		
	r awrt 0.904		

		nnn	AOs
Question	Scheme	Marks	AOs
9(a)	(i) $P(X=1) = 0.34523$ awrt <u>0.345</u>	B1	1.1b
	(ii) $P(X \le 4) = 0.98575$ awrt <u>0.986</u>	B1	1.1b
		(2)	
(b)	$\frac{(0 \times 10) + 1 \times 16 + 2 \times 7 + 3 \times 4 + 4 \times 2 + (5 \times 0) + 6 \times 1}{40} = 1.4^{*}$	B1*cso	1.1b
		(1)	
(c)	$r = 40 \times 0.34523$, $s = 40 \times 1 - 0.986$	M1	3.4
	$r = \underline{13.81} \qquad \qquad s = \underline{0.57}$	Alft	1.1b
		(2)	
(d)	H ₀ : The Poisson distribution is a suitable model H ₁ : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies < 5] So combine the last 3 cells	M1	2.1
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(10-9.86)^{2}}{9.86} + \dots + \frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt <u>1.1</u>	A1	1.1b
	Degrees of freedom = $4 - 1 - 1 = 2$	B1	3.1b
	(Do not reject H ₀ since $1.10 < \chi^2_{2,(0.05)} = 5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
	I		narks)
lotes:			
n)(i) 1: awrt n)(ii)	0.345		
	0.986		
	a fully correct calculation leading to given answer with no errors seen		
	attempt at <i>r</i> or <i>s</i> (may be implied by correct answers) both values correct (follow through their answers to part (a))		
M1: For	or both hypotheses correct (lambda should not be defined so correct use of the model) or understanding the need to combine cells before calculating the test statistic (may be uplied)		
M1: For	r attempt to find the test statistic using $\chi^2 = \sum \frac{(O-E)^2}{E}$		
B1: For	wrt 1.1 for realising that there are 2 degrees of freedom leading to a critical value $\chi_2^2(0.05) = 5.991$		
	ncluding that a Poisson model is suitable for the number of mortgages approved each		

