Paper 2 Option B

Further Pure Mathematics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
1(a)	$\sec x-\tan x=\frac{1}{\frac{1-t^{2}}{1+t^{2}}}-\frac{2 t}{1-t^{2}}$	M1	2.1
	$=\frac{1+t^{2}}{1-t^{2}}-\frac{2 t}{1-t^{2}}=\frac{1-2 t+t^{2}}{1-t^{2}}$	M1	1.1b
	$=\frac{(1-t)^{2}}{(1-t)(1+t)}=\frac{1-t}{1+t} *$	A1*	2.1
		(3)	
(b)	$\frac{1-\sin x}{1+\sin x}=\frac{1-\frac{2 t}{1+t^{2}}}{1+\frac{2 t}{1+t^{2}}}$	M1	1.1a
	$=\frac{1+t^{2}-2 t}{1+t^{2}+2 t}$	M1	1.1b
	$=\frac{(1-t)^{2}}{(1+t)^{2}}=\left(\frac{1-t}{1+t}\right)^{2}=(\sec x-\tan x)^{2}$ *	A1*	2.1
		(3)	
(6 marks)			
Notes:			
(a) M1: Uses $\sec x=\frac{1}{\cos x}$ and the t-substitutions for both $\cos x$ and $\tan x$ to obtain an expression in terms of t M1: Sorts out the sec x term, and puts over a common denominator of $1-t^{2}$ A1*: Factorises both numerator and denominator (must be seen) and cancels the ($1+t$) term to achieve the answer			
(b) M1: Uses the t-substitution for $\sin x$ in both numerator and denominator M1: Multiples through by $1+t^{2}$ in numerator and denominator A1*: Factorises both numerator and denominator and makes the connection with part (a) to achieve the given result			

Question	Scheme	Marks	AOs
2	$£ 300$ purchased one hour after opening $\Rightarrow V_{0}=3$ and $t_{0}=1$; half an hour after purchase $\Rightarrow t_{2}=1.5$, so step h required is 0.25	B1	3.3
	$t_{0}=1, V_{0}=3,\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{0} \approx \frac{3^{2}-1}{1^{2}+3}=2$	M1	3.4
	$V_{1} \approx V_{0}+h\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{0}=3+0.25 \times 2=\ldots$	M1	1.1b
	$=3.5$	A1ft	1.1b
	$\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)_{1} \approx \frac{3.5^{2}-1.25}{1.25^{2}+1.25 \times 3.5}\left(=\frac{176}{95}\right)$	M1	1.1b
	$\begin{aligned} & V_{2} \approx V_{1}+h\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right)_{1}=3.5+0.25 \times \frac{176}{95}=3.963 \ldots, \text { so } £ 396 \\ & \text { (nearest } £ \text {) } \end{aligned}$	A1	3.2a
		(6)	
(6 marks)			
Notes:			
B1: Identifies the correct initial conditions and requirement for h			
M1: Uses the model to evaluate $\frac{\mathrm{d} V}{\mathrm{~d} t}$ at t_{0}, using their t_{0} and V_{0}			
M1: Applies the approximation formula with their values			
A1ft: 3.5 or exact equivalent. Follow through their step value			
M1: Attempt to find $\left(\frac{\mathrm{d} V}{\mathrm{~d} t}\right)_{1}$ with their 3.5			

Question	Scheme	Marks	AOs
3	$\frac{1}{x}<\frac{x}{x+2}$		
	$\frac{(x+2)-x^{2}}{x(x+2)}<0$ or $x(x+2)^{2}-x^{3}(x+2)<0$	M1	2.1
	$\frac{x^{2}-x-2}{x(x+2)}>0 \Rightarrow \frac{(x-2)(x+1)}{x(x+2)}>0$ or $x(x+2)(2-x)(x+1)<0$	M1	1.1b
	At least two correct critical values from $-2,-1,0,2$	A1	1.1b
	All four correct critical values $-2,-1,0,2$	A1	1.1b
	$\{x \in \mathbb{R}: x<-2\} \cup\{x \in \mathbb{R}:-1<x<0\} \cup\{x \in \mathbb{R}: x>2\}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.2 \mathrm{a} \\ 2.5 \end{gathered}$
		(6)	
(6 marks)			
Notes:			
M1: Gathers terms on one side and puts over common denominator, or multiply by $x^{2}(x+2)^{2}$ and then gather terms on one side M1: Factorise numerator or find roots of numerator or factorise resulting in equation into 4 factors A1: At least 2 correct critical values found A1: Exactly 4 correct critical values M1: Deduces that the 2 "outsides" and the "middle interval" are required. May be by sketch, number line or any other means A1: Exactly 3 correct intervals, accept equivalent set notations, but must be given as a set e.g. accept $\mathbb{R}-([-2,-1] \cup[0,2])$ or $\{x \in \mathbb{R}: x<-2$ or $-1<x<0$ or $x>2\}$			

Question	Scheme	Marks	AOs
4(a)	Identifies glued face is triangle $A B C$ and attempts to find the area, e.g. evidences by use of $\frac{1}{2}\|\mathbf{A B} \times \mathbf{A C}\|$	M1	3.1a
	$\frac{1}{2}\|\mathbf{A B} \times \mathbf{A C}\|=\frac{1}{2}\|(-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}) \times(-\mathbf{i}+\mathbf{j}+2 \mathbf{k})\|$	M1	1.1b
	$=\frac{1}{2}\|5 \mathbf{i}+3 \mathbf{j}+\mathbf{k}\|$	M1	1.1b
	$=\frac{1}{2} \sqrt{35}\left(\mathrm{~m}^{2}\right)$	A1	1.1b
		(4)	
	Alternative		
	Identifies glued face is triangle $A B C$ and attempts to find the area, e.g. evidences by use of $\frac{1}{2} \sqrt{\|\mathbf{A B}\|^{2}\|\mathbf{A C}\|^{2}-(\mathbf{A B} . \mathbf{A C})^{2}}$	M1	3.1a
	$\begin{aligned} & \|\mathbf{A B}\|^{2}=4+9+1=14, \quad\|\mathbf{A C}\|^{2}=1+1+4=6 \\ & \text { and } \mathbf{A B} . \mathbf{A C}=2+3+2=7 \end{aligned}$	M1	1.1b
	So area of glue is $=\frac{1}{2} \sqrt{\left({ }^{\prime} 14^{\prime}\right)\left(6^{\prime}\right)-\left(7^{\prime}\right)^{2}}$	M1	1.1b
	$=\frac{1}{2} \sqrt{35}\left(\mathrm{~m}^{2}\right)$	A1	1.1b
		(4)	
(b)	Volume of parallelepiped taken up by concrete is e.g. $\frac{1}{6}(\mathbf{O C} \cdot(\mathbf{O A} \times \mathbf{O B}))$	M1	3.1a
	$=\frac{1}{6}(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(2 \mathbf{i} \times(3 \mathbf{j}+\mathbf{k}))$	M1	1.1b
	$=\frac{10}{6}=\frac{5}{3}$	A1	1.1b
	Volume of parallelepiped is $6 \times$ volume of tetrahedron $(=10)$, so volume of glass is difference between these, viz. $10-\frac{5}{3}=\ldots$	M1	3.1a
	Volume of glass $=\frac{25}{3}\left(\mathrm{~m}^{3}\right)$	A1	1.1b
		(5)	

Question 4 notes continued:

(b)

M1: Attempts volume of concrete by finding volume of tetrahedron with appropriate method
M1: Uses the formula with correct set of vectors substituted (may not be the ones shown) and vector product attempted
A1: Correct value for the volume of concrete
M1: Attempt to find total volume of glass by multiplying their volume of concrete by 6 and subtracting their volume of concrete. May restart to find the volume of parallelepiped
A1: $\frac{25}{3}$ only, ignore reference to units
(b) Alternative

M1: Notes (or works out using scalar products) that $-\mathbf{j}+\mathbf{3 k}$ is a vector perpendicular to both $\mathbf{O A}=2 \mathbf{i}$ and $\mathbf{O B}=3 \mathbf{j}+\mathbf{k}$
A1: \quad Finds (using that $\mathbf{O A}$ and $\mathbf{O B}$ are perpendicular), area of $A O B=\sqrt{10}$
M1: Solves $\mathbf{i}+\mathbf{j}+\mathbf{2 k}-p(-\mathbf{j}+\mathbf{3 k})=\mu(2 \mathbf{i})+\lambda(3 \mathbf{j}+\mathbf{k})$ to get the height of the tetrahedron $\left[(\mu=\lambda=) p=\frac{1}{2}\right.$, so $\left.h=\frac{1}{2}|-\mathbf{j}+3 \mathbf{k}|=\frac{1}{2} \sqrt{10}\right]$
M1: Identifies the correct area as 5 times the volume of the tetrahedron (may be done as in main scheme via the difference)
A1: $\frac{25}{3}$ only, ignore reference to units
(c)

B1: Any acceptable reason in context

Question	Scheme	Marks	AOs
5(a)	$\begin{aligned} y^{2}=(8 p)^{2}= & 64 p^{2} \text { and } 16 x=16\left(4 p^{2}\right)=64 p^{2} \\ & \Rightarrow P\left(4 p^{2}, 8 p\right) \text { is a general point on } C \end{aligned}$	B1	2.2a
		(1)	
(b)	$y^{2}=16 x$ gives $a=4$, or $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{y}$	M1	2.2a
	$l: y-8 p=\left(\frac{8}{8 p}\right)\left(x-4 p^{2}\right)$	M1	1.1b
	leading to $p y=x+4 p^{2} *$	A1*	2.1
		(3)	
(c)	$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$	M1	3.1a
	$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$	M1	1.1b
	$p=\frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0)=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$	M1	2.1
	$x=-9$	A1	1.1b
	$p=\frac{3}{2} \Rightarrow P(9,12) \Rightarrow \operatorname{Area}(R)=\frac{1}{2}(9--9)(12)-\int_{0}^{9} 4 x^{\frac{1}{2}} \mathrm{~d} x$	M1	2.1
	$44^{\frac{3}{2}}$	M1	1.1b
	$\int 4 x^{2} \mathrm{~d} x=\frac{4 x^{2}}{\left(\frac{3}{2}\right)}(+c)$ or $\frac{8}{3} x^{2}(+c)$	A1	1.1b
	$\operatorname{Area}(R)=\frac{1}{2}(18)(12)-\frac{8}{3}\left(9^{\frac{3}{2}}-0\right)=108-72=36 *$	A1*	1.1b
		(8)	

5(c) Alternative 1

$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$	M 1	3.1 a
$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$	M 1	1.1 b
$p=\frac{3}{2}$ into l gives $\frac{3}{2} y=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$	M 1	2.1
$x=\frac{3}{2} y-9$	A 1	1.1 b
$p=\frac{3}{2} \Rightarrow P(9,12) \Rightarrow \operatorname{Area}(R)=\int_{0}^{12}\left(\frac{1}{16} y^{2}-\left(\frac{3}{2} y-9\right)\right) \mathrm{d} y$	M 1	2.1
$\left(\frac{1}{16} y^{2}-\frac{3}{2} y+9\right) \mathrm{d} y=\frac{1}{48} y^{3}-\frac{3}{4} y^{2}+9 y(+c)$	M 1	1.1 b
Area $(R)=\left(\frac{1}{48}(12)^{3}-\frac{3}{4}(12)^{2}+9(12)\right)-(0)$	A 1	1.1 b
$=36-108+108=36 *$	$\mathrm{~A} 1 *$	1.1 b

5(c) Alternative 2

$B\left(-4, \frac{10}{3}\right)$ into $l \Rightarrow \frac{10 p}{3}=-4+4 p^{2}$
$6 p^{2}-5 p-6=0 \Rightarrow(2 p-3)(3 p+2)=0 \Rightarrow p=\ldots$
$p=\frac{3}{2}$ and l cuts $p x$-axis when $\frac{3}{2}(0)=x+4\left(\frac{3}{2}\right)^{2} \Rightarrow x=\ldots$
$x=-9$
$p=\frac{3}{2} \Rightarrow P(9,12)$ and $x=0$ in $l: y=\frac{2}{3} x+6$ gives $y=6$

$\Rightarrow \operatorname{Area}(R)=\frac{1}{2}(9)(6)+\int_{0}^{9}\left(\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)\right) \mathrm{d} x$	M 1	2.1
$\int\left(\frac{2}{3} x+6-4 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{1}{3} x^{2}+6 x-\frac{8}{3} x^{\frac{3}{2}}(+c)$	M 1	1.1 b
$(R)=27+\left(\left(\frac{1}{3}(9)^{2}+6(9)-\frac{8}{3}\left(9^{\frac{3}{2}}\right)\right)-(0)\right)$ $=27+(27+54-72)=27+9=36^{*}$ A 1	1.1 b	
	$\mathrm{~A} 1^{*}$	1.1 b
$\mathbf{(8)}$		

Question 5 notes:

(a)

B1: Substitutes $y_{P}=8 p$ into y^{2} to obtain $64 p^{2}$ and substitutes $x_{P}=4 p^{2}$ into $16 x$ to obtain $64 p^{2}$ and concludes that P lies on C
(b)

M1: Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it
M1: Applies $y-8 p=m\left(x-4 p^{2}\right)$, with their tangent gradient m, which is in terms of p.
Accept use of $8 p=m\left(4 p^{2}\right)+c$ with a clear attempt to find c
A1*: Obtains $p y=x+4 p^{2}$ by cso

(c)

M1: \quad Substitutes their $x="-a "$ and $y=\frac{10}{3}$ into l
M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
M1: \quad Substitutes their p (which must be positive) and $y=0$ into l and solves to give $x=\ldots$.
A1: \quad Finds that l cuts the x-axis at $x=-9$
M1: Fully correct method for finding the area of R

$$
\text { i.e. } \frac{1}{2}\left(\text { their } x_{P}-"-9 "\right)\left(\text { their } y_{P}\right)-\int_{0}^{\text {their } x_{P}} 4 x^{\frac{1}{2}} \mathrm{~d} x
$$

M1: Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$
A1: Integrates $4 x^{\frac{1}{2}}$ to give $\frac{8}{3} x^{\frac{3}{2}}$, simplified or un-simplified
A1*: Fully correct proof leading to a correct answer of 36

(c) Alternative 1

M1: Substitutes their $x="-a "$ and $y=\frac{10}{3}$ into l
M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
Substitutes their p (which must be positive) into l and rearranges to give $x=\ldots$
M1: Finds l as $x=\frac{3}{2} y-9$
A1: Fully correct method for finding the area of R
M1: i.e. $\int_{0}^{\text {their } y_{P}}\left(\frac{1}{16} y^{2}-\right.$ their $\left.\left(\frac{3}{2} y-9\right)\right) \mathrm{d} y$
M1: Integrates $\pm \lambda y^{2} \pm \mu y \pm v$ to give $\pm \alpha y^{3} \pm \beta y^{2} \pm v y$, where $\lambda, \mu, v, \alpha, \beta \neq 0$
A1: Integrates $\frac{1}{16} y^{2}-\left(\frac{3}{2} y-9\right)$ to give $\frac{1}{48} y^{3}-\frac{3}{4} y^{2}+9 y$, simplified or un-simplified
A1*: Fully correct proof leading to a correct answer of 36

Question 5 notes continued:

(c) Alternative 2

M1: Substitutes their $x="-a "$ and $y=\frac{10}{3}$ into l
M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p=\ldots$.
M1: Substitutes their p (which must be positive) and $y=0$ into l and solves to give $x=\ldots$.
A1: \quad Finds that l cuts the x-axis at $x=-9$
M1: Fully correct method for finding the area of R

$$
\text { i.e. } \frac{1}{2}(\text { their } 9)(\text { their } 6)+\int_{0}^{\text {their } x_{P}}\left(\text { their }\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)\right) \mathrm{d} y
$$

M1: Integrates $\pm \lambda x \pm \mu \pm v x^{\frac{1}{2}}$ to give $\pm \alpha x^{2} \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, v, \alpha, \beta \neq 0$
A1: Integrates $\left(\frac{2}{3} x+6\right)-\left(4 x^{\frac{1}{2}}\right)$ to give $\frac{1}{3} x^{2}+6 x-\frac{8}{3} x^{\frac{3}{2}}$, simplified or un-simplified
A1*: Fully correct proof leading to a correct answer of 36

Further Statistics 1 Mark Scheme (Section B)

Question	Scheme	Marks	AOs		
7(a)	$-4=2-5 \mathrm{E}(X)$	M1	3.1a		
	$\mathrm{E}(X)=1.2$				
	$-1 \times{ }_{c}+0 \times a+1 \times a+2 \times b+3 \times{ }_{c}=1.2$	M1	1.1b		
	$a+2 b+2 c=1.2$ 11				
	$\begin{aligned} & \mathrm{P}(Y \geqslant-3)=0.45 \text { gives } \mathrm{P}(2-5 X \geqslant-3)=0.45 \\ & \text { i.e. } \mathrm{P}(X \leqslant 1)=0.45 \end{aligned}$	M1	2.1		
	$2 a+c=0.45 \quad 2$				
	$2 a+b+2 c=1 \quad 3$	M1	1.1b		
	$\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}1.2 \\ 0.45 \\ 1\end{array}\right) \Rightarrow\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4\end{array}\right)\left(\begin{array}{c}1.2 \\ 0.45 \\ 1\end{array}\right) \underline{\underline{\text { or }} \text { }}$	M1	1.1b		
	e.g. $3-2 \Rightarrow b+c=0.55$ sub. $2(b+c)$ into $1 \Rightarrow a=0.1 \mathrm{etc}$				
	$a=0.1 \quad b=0.3 \quad c=0.25$	A1	$1.1 \mathrm{~b}$		
		(7)			
(b)	$\operatorname{Var}(Y)=75-(-4)^{2}$ or 59	M1	1.1a		
	$\left[\operatorname{Var}(Y)=5^{2} \operatorname{Var}(X)\right.$ implies] $\operatorname{Var}(X)=2.36$	A1	1.2		
		(2)			
(c)	$\mathrm{P}(Y>X)=\mathrm{P}(2-5 X>X) \rightarrow \mathrm{P}\left(X<\frac{1}{3}\right)$	M1	3.1a		
	$\mathrm{P}\left(X<\frac{1}{3}\right)=a+c=0.35$	A1ft	1.1b		
		(2)			
(11 marks)					
Notes:					
(a) M1: For using given information to find an expression for $\mathrm{E}(X)$ i.e. use of $\mathrm{E}(Y)=2-5 \mathrm{E}(X)$ M1: For use of $\sum x \mathrm{P}(X=x)=$ '1.2'					
M1: For use of $\mathrm{P}(Y \geqslant-3)=0.45$ to set up the argument for solving by forming an equation in a and c					
M1: For use of $\sum \mathrm{P}(X=x)=1$					
M1: For solving their 3 linear equations (matrix or elimination) A1: For any 2 of a, b or c correct A1: For all 3 correct values					

Question 7 notes continued:

Another method for part (a) is:
M1: For using given information to find the probability distribution for Y leading to an expression for $\mathrm{E}(Y)$
M1: For use of $\sum y \mathrm{P}(Y=y)=-4$
M1: For use of $\mathrm{P}(Y \geqslant-3)=0.45$ to set up the argument for solving by forming an equation in a and c
M1: For use of $\sum \mathrm{P}(Y=y)=1$
M1: For solving their 3 linear equations (matrix or elimination)
A1: For any 2 of a, b or c correct
A1: For all 3 correct values
(b)

M1: For use of $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2} \quad$ (may be implied by a correct answer)
A1: For use of $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ to reach 2.36 or exact equivalent
(c)

M1: For rearranging to the form $\mathrm{P}(X<k)$
A1ft: $0.1^{\prime}+{ }^{\prime} 025^{\prime}$ (provided their a and c and their $a+c$ are all probabilities)

Another method for part (c) is:

M1: For comparing distribution of X with distribution of Y to identify $X=-1$ and $X=0$
A1ft: ${ }^{\prime} 0.1$ ' $+{ }^{\prime} 025$ ' (provided their a and c and their $a+c$ are all probabilities)

Question	Scheme	Marks	AOs
8(a)	$X \sim \operatorname{Po}(2.6) \quad Y \sim \operatorname{Po}(1.2)$		
	P (each hire 2 in 1 hour) $=\mathrm{P}(X=2) \times \mathrm{P}(Y=2)=0.25104 \ldots \times 0.21685 \ldots$	M1	3.3
	$=0.05444 \ldots$ awrt $\underline{0.0544}$	A1	1.1b
		(2)	
(b)	$W=X+Y \rightarrow W \sim \operatorname{Po}(3.8)$	M1	3.4
	$\mathrm{P}(W=3)=0.20458 \ldots . \quad$ awrt $\underline{\mathbf{0 . 2 0 5}}$	A1	1.1b
		(2)	
(c)	$T \sim \operatorname{Po}((2.6+1.2) \times 2)$	M1	3.3
	$\mathrm{P}(T<9)=0.64819 \ldots$ awrt $\underline{\mathbf{0 . 6 4 8}}$	A1	1.1b
		(2)	
(d)	(i) Mean $=n p=\underline{\mathbf{2} .4}$	B1	1.1b
	(ii) Variance $=n p(1-p)=2.3904$ awrt $\underline{\mathbf{2 . 3 9}}$	B1	1.1b
		(2)	
(e)	$\begin{aligned} & \text { (i) }[D \sim \operatorname{Po}(2.4) \quad \mathrm{P}(D \leqslant 4)] \\ & =0.9041 \ldots \end{aligned}$ awrt 0.904	B1	1.1b
	(ii) Since n is large and p is small/mean is approximately equal to variance	B1	2.4
		(2)	
(10 marks)			
Notes:			
(a) M1: For $\mathrm{P}(X=2) \times \mathrm{P}(Y=2)$ from $X \sim \mathrm{Po}(2.6)$ and $Y \sim \operatorname{Po}(1.2)$ i.e. correct models (may be implied by correct answer) A1: awrt 0.0544			
(b) M1: Fo A1: $\begin{aligned} & \text { ans } \\ & \text { aw } \end{aligned}$	For combining Poisson distributions and use of $\operatorname{Po}\left({ }^{\prime} 3.8^{\prime}\right)$ (may be implied by correct answer) awrt 0.205		
$\begin{array}{ll\|} \hline \text { (c) } & \\ \text { M1: } & \text { For } \\ & \text { by } \\ \text { A1: } & \text { aw } \\ \hline \end{array}$	For setting up a new model and attempting mean of Poisson distribution (may be implied by correct answer) awrt 0.648		
$\begin{aligned} & \text { (d)(i) } \\ & \text { B1: Fol } \end{aligned}$	For 2.4		
(d)(ii) B1: For awrt 2.39			
(e)(i) B1: For awrt 0.904			
(e)(ii) B1: For a correct explanation to support use of Poisson approximation in this case			

Question	Scheme	Marks	AOs
9(a)	(i) $\mathrm{P}(X=1)=0.34523 \ldots \quad$ awrt $\underline{0.345}$	B1	1.1b
	(ii) $\mathrm{P}(X \leqslant 4)=0.98575 \ldots \quad$ awrt $\underline{\mathbf{0 . 9 8 6}}$	B1	1.1b
		(2)	
(b)	$\frac{(0 \times 10)+1 \times 16+2 \times 7+3 \times 4+4 \times 2+(5 \times 0)+6 \times 1}{40}=1.4$ *	B1*cso	1.1b
		(1)	
(c)	$r=40 \times$ '0.34523 \ldots ' $\quad s=40 \times 1-0.986 \ldots$ '	M1	3.4
	$r=\underline{\mathbf{1 3 . 8 1}} \quad s=\underline{\mathbf{0 . 5 7}}$	A1ft	1.1b
		(2)	
(d)	H_{0} : The Poisson distribution is a suitable model H_{1} : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies <5] So combine the last 3 cells	M1	2.1
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(10-9.86)^{2}}{9.86}+\ldots+\frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt 1.1	A1	1.1b
	Degrees of freedom $=4-1-1=2$	B1	3.1b
	(Do not reject H_{0} since $1.10<\chi_{2,(0.05)}^{2}=5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
(11 marks)			
Notes:			
B1: awrt 0.345			
B1: awrt 0.986			
(b) B1*: For a fully correct calculation leading to given answer with no errors seen			
(c) M1: For attempt at r or s (may be implied by correct answers) A1ft: For both values correct (follow through their answers to part (a))			
(d) B1: For both hypotheses correct (lambda should not be defined so correct use of the model) M1: For understanding the need to combine cells before calculating the test statistic (may be implied)			
M1: For attempt to find the test statistic using $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$ A1: awrt 1.1 B1: For realising that there are 2 degrees of freedom leading to a critical value of $\chi_{2}^{2}(0.05)=5.991$			
A1: Concluding that a Poisson model is suitable for the number of mortgages approved each week			

